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* Regulatory network
* Reverse engineering
e Bayesian network



Part I: Regulatory Network

All Factors

Lee et al. Science 2002.



Number of nodes with links

Scale-free network

Poisson

. Many nodes
’y with few links

H
'

M7

! ))5\\(
e Absence ’
' ¥ of highly-connected

o‘ *FY links

' A}
'
Iy '
/A +—1J
I' \\

Number of inks

Number of nodes with links

Scale-free

é
B |
o9 Many nodes
&W with few links
{“‘ Few hubs with
ﬂ\\ many links
34 , ﬂ
’ .
? ‘v\\ -
b B
3ok 22 P W
Number of links

EEnm () SEmERSE (8) B



Scale-free network

A Random network B Scale-free network C Hierarchical network
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Scale-free network




Regulatory Network
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Regulatory Network




Transcription Regulatory Code

Each gene is regulated by a set of TFs.
Each TF can regulate many genes.

Which genes are regulated by which_TFs on
which conditions?

How does regulator control the expression of
its target gene?



How to Clarify Transcription Regulatory
code ?

In silico.

From sequence to gene
regulatory network.

Find all the potential TFBS
upstream a gene.

Predict gene expression
from gene sequence.
Cell,2004.

. i

Too much noise!

Experimental methods

* Gelshift
 DNA footprinting.
* Reporter genes

1 1

Not large scale

Not systematic



ChIP-chip Experiments

Identify all the target genes that can be directly or
Indirectly bind by a TF.
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ChIP-chip Experiments
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ChIP-chip Experiments

Binding sites
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Cy3 intensity
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ChIP-chip Experiments

1 condition, 1 TF

Jason et.al. Nature (2001). Promoter-specific binding of
Rap1l revealed by genome-wide maps of protein-DNA
association.

* 1 condition, 106 TFs

Lee et.al. Science(2002). Transcription regulatory networks
in Saccharomyces cerevisiae

* Multiple conditions, 203 TFs.

Harbison, et.al. (2004). Transcription regulatory code of a
eukaryotic genome.



http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi?s=17&f=downloaddata

“Development”
Blosynthesis

Environmental response

Metabolism

Lee, et al. Science, 2002.



90

188

8TE12

LEU1

BATI

49

;_
@ (39 TF;
oz

240 genes)

—

81

ILy2

Lee, et al. Science, 2002.



Multiple Conditions

*All regulators
were profiled
in rich
medium

*A subset of these
were profiled
In at least one
of 12 other
environmental

condition

Harbison et al.
Nature 2004.
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Part Il: Reverse Engineering

* Given: a (large) set of gene expression observations
* Goal: find the network fits that observation data.

e References:

— Gardner, di Bernardo, Lorenz, and Collins. Inferring Genetic
Networks and Identifying Compound Mode of Action via
Expression Profiling. Science 301, pp.102-105 (2003)

— Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene van
Someren, Reinhard Guthke. Gene regulatory network inference:

Data integration in dynamic models—A review. BioSystems 96
(2009) 86—-103.



Reverse Engineering

i

— TESX E£ren

b
' ; ... ETTT
rg%x e (e257]
b e —0
2y I B
5 H | 1%
: | : B
< I A °
"‘I 3 &
; 2 L
‘IR X = s I =
© ° E
z;‘ s ' E \ )_—I_ = IE :
18 KRS
m Im 5 g
5 s DR 2 B F
® ; SR D Wb EOR E iOS App Reverse Engineering
LR R Archer SRRATRASILDIOON 2 Analysis and Practice
r o »~ v 4 ] o BRE—AHZOSHATRTENTNER  (FEEERESS
v [y ¢ E ST REREOS AR
3 Sl : WERGER , THHEE , NOSRURID, XHABSmEE
— 24y / S Eﬂg, @ggz,\gfﬁg@] , & class-dump, Theos, Cycript,
= Reveal, IDA. GDBELAEH T RIS T HIOSHATER
“K1 DR, FARIRT
; | ;
N
. lQ( € j q
L K
iy ™ ) g
o ; -
¢ % 3
. » ¢ I % T AT KR
. : ] daranssn Atce il ;: (aaryart
i




Reverse Engineering




DREAM Project

DREAM: Dialogue for Reverse Engineering
Assessments and Methods.

Objective: To catalyze the interaction between
experiment and theory in the area of cellular
network inference and quantitative model
ouilding in systems biology.

nttp://dreamchallenges.org/

nttp://dreamchallenges.org/challenges/
(current DREAM)



http://dreamchallenges.org/
http://dreamchallenges.org/challenges/

Modeling Expression with Differential
Equations

Assumes network behavior can be modeled as a system of
linear differential equations of the form:

dx/dt = AXx + u

X is a vector representing the continuous-valued levels
(concentrations) of each network component

A is the network model: an N x N matrix of coefficients
describing how each x; is controlled by upstream genes x; x,,
etc.

u is a vector representing an external additive perturbation to
the system



An example:

From discrete- to continuous-valued networks

Three genes: x,, x,, X3
x1 activates x2
x2 activates x1 and x3

x3 inhibits x1

dx,/dt = a,,x,

dx,/dt = a,,x,

x1 x2 X3
AN
x1 x2 x3
dx/dt = AX + u
g X | 0 a12 o a13 X
pm X, a, 0 0 | X,
X4 0 a,, 0 | X,




The steady state assumption

Near a steady-state point, expression levels do not change
over time.

Under the steady-state assumption, the model reduces to 0 =
AX +u > Ax =—u

A straightforward method to infer A would be to apply N
perturbations, u, to the network, in each case measuring
steady-state expression levels for the x.

However, in larger networks it may be impractical to apply so
many perturbations

As a simplifying assumption, consider that each gene has a
maximum of k non-zero regulatory inputs.



The Inference Procedure

AXx = —u
Infer inputs to each gene separately

For the given gene, consider all possible
combinations of the k regulatory inputs

For each combination, use multiple linear
regression to determine optimal values of the
k coefficients

Choose the combination that fits the observed
data with the least error



Multiple regression

—AX

A is the fit

-




Application to SOS System

Fig. 1. Diagram of inter- @
actions in the SOS net- :
work. DNA lesions <MMC p T 03
caused by mitomycin C e Hepicalion
(MMC) (blue hexagon) @ :+?
are converted to single- +
stranded DNA during ~
chromosomal  replica- ®frocA| [HECA)_@
tion. Upon binding to
ssDNA, the RecA protein .l Ie“: s CETY i
is activated (RecA*) and
serves as a coprotease —114
for the LexA protein. The Cell Death
LexA protein is cleaved, UmuD'C
thereby diminishing the Regulation of
repression of genes that Y |
mediate multiple pro- ~@]umuDC [—#—(UmuC)-
;ectivte responses. IEDXES

enote genes, ellipses Y
denote pgroteim, hzxa— —@|dinl_[—»(Dinl_)- e irE) Bloee
gons indicate metabo- o638 ¥ 5
lites, arrows denote pos-
itive regulation, fﬁled reck (BecF)
cirdes denote negative
regulation. Red empha- | -
sis denotes the primary 5 e 58) Heat Shock
pathway by which the & Y Response
network is activated af- @ rpoD}—-( 670 )—
ter DNA damage. |

Gardner, di Bernardo, Lorenz, and Collins. Inferring Genetic Networks and Identifying
Compound Mode of Action via Expression Profiling. Science 301, pp.102-105 (2003)



Part IlI: Bayesian Network

o AFE4rSlides+ 2K H T N.Friedman and
D.Heckman’s slides.

 References:

* N.Friedman et al. Using Bayesian Networks to
analyze expression data. J. Comput. Biol.,
7:601-620, 2000.



Motivation

* Given gene expression data, what's the
relationship between genes?
— Who regulates who?
— How does one gene regulate other gene?

* Exploring the relationship among features to

construct a better classifier instead of treating
them independently.



Bayesian Network

* Directed acyclic graph (DAG).
— Nodes: random variables.
— Edges: direct influence.

* Set of conditional probability distributions.
* Joint distribution.

piX) = 1_[ pi X, | parentsi X; ).

i=1



Bayesian Networks: Example

Family of Alarm

Earthquake) ( Burglary E BI|PAEB)
V e 0.9 0.1
e 0.2 0.8

Ol T Tl T |©

®

ol

0.01 0.99 /

P(B,E,AC,R)=P(B)P(E)P(A|B,E)P(R|E)P(C|A)
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Bayesian Network
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Learning Problems

e Estimation of the parameters.
e Construct the structure.

Let’s start from the basic parameter estimation
problem.



A: Learning Parameters



Simple Case: Binomial Experiment

777777§§/777777 77777%77777777

Head Tall

+When tossed, it can land in one of two positions: Head or Tail
+\\e denote by 6 the (unknown) probability P(H).

Estimation task:

+Given a sequence of toss samples x[7], x[2], ..., x[M] we
want to estimate the probabilities P(H)=6 and P(T) =1-6



Likelihood Function

+ How good is a particular 67
It depends on how likely it is to generate the observed
data

L(6:D)=P(D|0)=]]P(x[m]|6)

+Thus, the likelihood for the sequence H, T, T, H, H Is

| /NN

L(0:D)=6-(1-6)-(1-6)-0-0

Y 6:D)




Sufficient Statistics

+ 10 compute the likelihood in the thumbtack example we
only require Nyand Ny
(the number of heads and the number of tails)

L(6: D)= 6N .(1— )M

N, and Nrare sufficient statistics for the binomial
distribution

+A sufficient statistic is a function that summarizes. from
the data. the relevant information for the likelihood

o If s(D) = s(D), then L(B | D) = L(® | D)



Maximum Likelihood Estimation (MLE)

* MLE principle: Learn parameters that
maximize the likelihood function.

* This is one of the most commonly used
estimation in statistics (Classical approach)
and intuitively appealing.



MLE In Binomial Case

+Applying the MLE principle we get
5 N
Ny+IN-

(Which coincides with what one would expect)

Example:
(NgN7) = (3.2)

L(6:D)

MLE estimate is 3/6=06



MLE is Not Enough

#+MLE commits to a specific value of the unknown
parameter(s)

VS,

Coin Thumbtack

#MLE is the same in both cases
sConfidence in prediction is clearly different



Bayesian Inference




Bayesian Inference

 Representing uncertainty about parameters using a
probability distribution over parameters, data.

e Using Bayes’ rule to learn.
— Data (D) and their probability distribution p(z}€)
— Prior distribution p{#|¢

moE) p)9. )

WO| D, €) = Eah
}Ilk | o }”Lﬂlhbj

Pl = j PLON. £ p(B|£) I



Binomial Experiment Revised

FPrior: Beta distribution

pift) = Betaloy. ap)

Doy + o)
FI:EI*” :I 4 ]._'|:I'1'Jr':|

g 1|:]_—|"'."1I“" 1
Posterior:

plH| D) = Betalog + Ny.op + Ny

_ F[H.r,r + v -|— ;1"'.'-H + ;\q-'lr':l H:"i'-H+'-“”-' 1|,1 B Hﬁljn..'J._l_n.l,. 1
Dievgg + N )+ Ulovp + Nop ) ) J



L

Beta Distribution

Bola 0.5, 0.5

Fiziai 1. 13

/

Betal =, 2

ot 19, 30



MAP (Maximum A-Posterior
Probability)

* Using MAP, we can obtain an estimation of
the parameter

~ oy + Ny
i

oy + o+ N+ Np

e Recall that the MLE is

5 | Ny |
Ny + Ny




Intuition

* The hyperparameters O, and O.; can be
thought of imaginary counts (psudo-counts)
from our experience.

* Equivalent sample size= O, + OL-.

* The larger the equivalent sample size, the
more confident we are about the true
probability.



Bayesian Inference vs. MLE

Frequentist Approach:

sAssumes there is an unknown but fixed parameter 6
sEstimates 6 with some confidence

s#Prediction by using the estimated parameter value

Bayesian Approach:
sRepresents uncertainty about the unknown parameter
s#Uses probability to quantify this uncertainty:

e Unknown parameters as random variables
s+Prediction follows from the rules of probability:

s Expectation over the unknown parameters




Bayesian Inference vs. MLE (Cont.)

* |[n our example, MLE and Bayesian prediction
differ.

 However, If prior is well-behaved (does not
assign O density to any feasible parameter
value), then both IVILE and Bayesian prediction
converge to the same value, the "true”
distribution.
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Learning Parameters

* Training data has the form:

CE[] B[] A1l C]]

E[M] B[M] AM] C[M]



Likelihood Function

* Assume i.i.d. samples
* Likelihood function is

L(®:D)=]]P(E[m].B[m],A[m],C[m]: ©)



Likelihood Function

* By definition of network, we get

L(®:D)= HP(E [m],Alm],C[m]: @) (B CBD

P(E[m]:@) C 7
P(B[m]: @)

~L1 o apm 81 E 1m0 O
P(CIm]| Alm]: ©)

CJEm B8m A cnl

CJEmy Bimy am) cimi>




Likelihood Function

* Rewriting terms, we get

CEL
L(®:D)= HP(E m],8[m],Alm],C[m]: ©)
M_P(E [m]: ©)
= [1P@Im:0)
‘_m‘_P(A[m] | B[m],E[m]: ©)
mP(C[mJIA[m]=®) E1]\ [ B[1]

4 Subnetworks E[M B[M



General Bayesian Networks

Generalizing for any Bayesian network:

=[] [PCx.[m]|Pam]: ©,)
= HLY(@i : D)

The likelihood to small ones
according to the structure of the network.



General Bayesian Networks (Cont.)

* Decomposition = Independent
estimation problems

* If the parameters for each family are not
related, they can be estimated
independently of each other.



From Binomial to Multinomial

+For example, suppose X'can have the values 7,.2,.. K
+\We want to learn the parameters & , 6 .., 8 ¢

Sufficient statistics:

N, N, ..., N-the number of times each outcome is
observed

Likelihood function:
'
L(6:D) =[]0,
k=1

MLE: N

By =k

2N



From Beta to Dirichlet Distribution

Prior: Ihrichlet distribution

pl#) = Div(#log, - o)
y i
N Py + -+ ag ) o
HL LUlow) 12

Posterior:

p(#| D) = Dir(flag. - oK)

i - K
Doy b bag BNy N HHﬂ.l.-+:"l'-|'.-
— I

T, T + Ny -




From Beta to Dirichlet Distribution
(Cont.)

The MAP 1s
v+ N
Z.Ll':‘” + Ny

The marginal likelihood is

. —

PIZD'G:I =fF|:D|H_G:|P|:H|G:|r.i'H

_ rrz,l!, 1”1.1' ﬁ vy, + Ny
F(E?—l L 'I_E.ﬁ—l Ne) Dievg )



Likelihood for Multinomial Network

s#\When we assume that AX:/ Pa;) is multinomial, we get
further decomposition:

L(B,:D) = HF[J{_I-[m] | Pam]:0,.)

m
=TT T1P(x;[ml| pa; : ©;)
. mAa,Lml=pa

=TTT1P(x; | pa; : ©,)Ne 20 — T[]0, |y, Vor-ra2
e pa, x

sFor each value paof the parents of X.we get an
independent multinomial problem

sTheMLEis 5  _N(x;.pq)
s N(pa;)




Bayesian Inference for
Multinomial Network

* Given data, we can compute the posterior for each
multinomial independently. The posteriors are also
Dirichlet with parameters

o(X=1lpa N (X71lpay,.., a(X=klpa)N (X =k|pa)

* The predictive distribution is then represent by
parameters

¥ _x.pa)+ Nx;, pa)
T opa) + Npa)




More Generalizations

* Likelihood from exponential family.
— Binomial distribution
— Multinomial distribution
— Poisson distribution
— Gamma distribution
— Normal distribution

* Conjugated distributions.



Learning Parameters: Summary

 Estimation relies on sufficient statistics
— For multinomials: counts N(x;,pa;)

— Parameter estimation

s _NGa.pa) 5 olx.pa)+N(x;.pa)
xlpe = N (pa; ) xlps— afpa;)+N(pa;)
MLE Bayesian (Dirichlet)

* Both are asymptotically equivalent.



B. Learning Structure From Data



Bayesian Network

. ZEF

T Ko g

g ITENA

KR EMAEE



JUK(VNC RS

o M HA IR 2% 25 g 2 ) IR A T 48 B e {0 P 2%

ZERE & —PNPIR &R, X DL

o AP F 7T PR SR -

R A

— G SR ARSI G5 N L, B —

oI (RN MIBR. BRI D
{E iRV IE

E2IPFr R %L

P [ R R 2R 7
1 o 9 25 2 B 2 AT 4



Why Struggle for Accurate Structure?

@ Burglary

* Cannot be compensated for by e Increases the number of
fitting parameters parameters to be estimated
* Wrong assumptions about * Wrong assumptions about

domain structure domain structure



Scorebased Learning

Define scoring function that evaluates how well a
structure matches the data

e
N

AN

d

O

%
B |

)

Search for a structure that maximizes the score



Score Function |

Which structure is good?

 BDe scores (Heckman)

BDe(6 : D) =log [P(D|6,0)P(0]6)dO +logP(6)

[Marginal Iikﬁ [ Structure%




Marginal Likelihood
(Multinomial Case)

e |f data are complete, we can obtain the close form.

J”lJr_}|{ I ﬁ ﬁ 1'2?:1 ”-';_ni-i-':l H L '“.Ij.f. | \I"i_f.r-.l
L3kl e + 24 1 Nighe)

Uievssn)
i—1 = =1 =1 Vigk) ik
Niji « Number of cases where Xy =k, Pax, = |
riosmher of states of X

q; » munber of mstance of parents of X;.



Practical Consideration

Super exponential number (in the number of
variables) of possible structures.

* How do we find the best graphs?

* How do we assign structure and parameter
oriors to all possible graphs?




Structure Prior Choice

* All possible structures are equally likely.
* Fix (or forbid) some arcs.

* Choosing a prior proportions to the similarity
to a prior network structure.



Model Selection

* Theorem: finding the best BN structure among
those structures with at most k parents in NP-

hard problem (k>1).
* Heuristic searching

— Greedy

— MCMC



Score Function Il

Which structure is good?

e BIC/MDL scores

— BIC: Bayesian Information Criterion.
— MDL: Minimum Description Length.

BIC(G,®: D) = log P(D |G,®)— 129N

[ Fitness t(ﬁ Complexity }

regularization

#paramin G




Minimum Description Length
Principle

* Universal coding.

— Description length of the compressed form
(model) of data.

— Description length of the model itself used in
the compression.



Minimum Description Length
Principle (Cont.)

e Bayesian network case.
— Modeling of data (Probability distribution).
— Network coding (number of parameters).

See: N.Friedman. Learning Bayesian networks
with local structure.



Decomposability

* Key property of the Bayesian network with
complete data.

score(G) = 2 score ( family of Xin G)



Tree-structured Networks

Trees: At most one parent
per variable.

Why trees?

GO S
* Elegant math=>we can

solve the
optimization problem

* Sparse
parameterization to
avoid over-fitting




Learning Trees

* Let p(i) denote parent of X;

* The Bayesian score can be written as sum of
edge scores.

Score(G : D) = > Score(X; : Pa,)

= Z(Score(xi X o)) — Score(Xi))+ Z Score(X,)

Improvement over Score of “empty”
“empty” network network




Learning Tree

* Set edge weight as: Score( X; = X; ) - Score(X)).

* Well studied Problem in graph theory: Find the tree
with maximum weight. It can be solved by maximum
spanning tree algorithm (MST) in an efficient way.



Kruskal’s Algorithm on MST

begin Kruskal,
sort the arcs in A in decreasing order of their weights;
LIST = O;
while |LIST| <n—-1do
begin
if the next arc does not create a cycle then add
it to LIST
else discard it
end;
end;



Heuristic Search: Beyond Trees

* Define a search space:
— search states are possible structures
— operators make small changes to structure

* Search techniques:
— Greedy hill-climbing
— Best first search
— Simulated Annealing



Local Search

e Start with a given network
— empty network
— best tree
— a random network
* At each iteration
— Evaluate all possible changes

— Apply change based on score

e Stop when no modification improves score



Typical Operations In Heuristic Search

To update score after local change,
only re-score families that changed




Local Search: Possible Pitfalls

* Local search can get stuck in:

— Local Maxima:
* All one-edge changes reduce the score

— Plateaus:

* Some one-edge changes leave the score
unchanged



Escape From Traps

e Random restarts.

* Simulated annealing

— Take the bad score with probability proportion
to exp(Ascore/t).

— Cool down slowly.



Discovering Structure

P(G|D)

(B B

(R (A
@

* Current practice: model selection
— Pick a single high-scoring model
— Use that model to infer domain structure



Discovering Structure

P(G|D)
OB OO OO O
OD BO@D O A &Y
> D) @3 D) O
Problem

— Small sample size = many high scoring models
— Answer based on one model often useless.
— We want features common to many models.



Bayesian Approach

e Posterior distribution over structures
e Estimate probability of features

— Edge XY Bayesian score

— PathX—.. > Y forG
P(f |D)— F(G))P(G | D)
Feature of G, Indicator functlon

e.g., XY for feature f




Practical Implementation

* Bootstrap method.

— Randomly generate m “perturbed” sample sets.
— For each sample set, choose a best model G..
— Average the feature among these m structures.

P(f(e>|o>~%if(6,>



C: Dealing With Missing Data

1. Structure known, how to learn the
parameters?
2. Structure unknown, how to learn the

structure and parameters?



Bayesian Network
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Incomplete Data

Data is often incomplete
 Some variables of interest are not assigned values.

This phenomenon happens when we have

* Missing values:
— Some variables unobserved in some instances

e Hidden variables:
— Some variables are never observed
— We might not even know they exist



Hidden (Latent) Variables

 Why should we care about unobserved
variables?

17 parameters 27 parameters
17=1+1+1+8+2+2+2 27=1+1+1+8+8+8



More Computation

 The likelihood of the data does not
decompose.

* Complete data.

* Incomplete data.

logL(®:D=(x,....x))=log > []P(x |Pa(x))

Xiag re-on Xy



Learning Parameters With Incomplete
Data

e Expectation maximization (EM) iteration
algorithm is the general purpose method for
learning from incomplete data.

— E-Step.
— M-Step.



EM Intuition

If we had true counts, we could estimate parameters.
But with missing values, counts are unknown.

We “complete” counts using probabilistic inference
based on current parameter assignment.

We use completed counts as if real to re-estimate
parameters.



EM Algorithm

Data Expected Counts

| P(Y=HIX=H,Z=T,0) = (%
X
/ \ N(XY)

<

1.3
0.4

Current
model

T #

44TV
THAVvvVYH| N

1.7
1.6

XX 44X x
44T X <

| P(Y=HIX=T,0) = 0.4
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ork

Computation

& Q‘EE;TE-S@,J) >

Training

Reiterate

Expected Counts

N(X1)

N(X2)

N(X3)

N(H, X, Xq, X3)
N(Y1, H)
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EM Algorithm (Cont.)

Formal Guarantees:
* L(6;:D)>L(©,D)

— Each iteration improves the likelihood
* If ®;=6,,then B, is a

L(®:D)

— Usually, this means a local maximum

of



Computational Bottleneck

Computation of expected counts in E-Step

— Need to compute posterior for each unobserved
variable in each instance of training set.

— All posteriors for an instance can be derived from
one pass of standard BN inference.



Summary: Parameter Learning
With Incomplete Data

Incomplete data makes parameter estimation hard

Likelihood function

— Does not have closed form

— Is multimodal

Finding maximum likelihood parameters:
— EM

— Gradient ascent

Both exploit inference procedures for Bayesian
networks to compute expected sufficient statistics



Incomplete Data: Structure Scores

Recall, Bayesian score:

P(G|D)x P(G)P(D|G)

- PG)][P(D|G,®)P@®|G)do

With incomplete data:
e Cannot evaluate marginal likelihood in closed form.
* We have to resort to

— Evaluate score around MAP parameters

— Need to find MAP parameters (e.g., EM)



Nalve Approach

* Perform EM for each candidate graph.
 Computationally expensive:

— Parameter optimization via EM — non-trivial
— Need to perform EM for all candidate structures
— Spend time even on poor candidates

* |n practice, considers only a few candidates.



Structural EM

Recall, in complete data we had
—Decomposition = efficient search.

Idea:
* |nstead of optimizing the real score...
* Find alternative score.

e Such that maximizing new score —
improvement in real score.



Structural EM (Cont.)

Idea:
* Use current model to help evaluate new structures

Outline:
* Perform search in (Structure, Parameters) space.
* At each iteration, use current model for finding either:

— Better scoring parameters: “parametric’ EM step.
— Better scoring structure: “structural” EM step.



Structural EM Steps

Assume B, = (G, 0,) is "current” hypothesis.
Goal: Maximize expected score, given B,

E[Score(B:D")|D,B, 1= Score(B:D")P(D* |D,B,)
D+
where D* denotes completed data sets.
Theorem:(progress)
If E[Score(B : D*) | D,B,] > E[Score(B, : D*) | D,B,]

—

e This implies that by improving the expected score, we find
networks that have higher objective score.



Structural EM for BIC/MDL

For the BIC/MDL score, we get that

E[BIC(B:D")|D,B,]
=E[logP(D" | B) | D,B, ] - Penalty(B)
= E[Z N(X;,Pa)logP(X,|Pa)|D,B,]-Penalty(B)
= Z E[N(X,,Pa)|D,B,]log P(X, | Pa,)—Penalty(B)

Consequence:

 We can use complete-data methods, where we use expected
counts, instead of actual counts.



Training

Data
7

Computation

Reiterate

Expected Counts
N(Xy)

N(Xz)

N(X3)

N(H, X, X{, X3)
N(Yy, H)

N(Y2, H)

N(Ys, H)

N(Xz X1)
N(H, X,, X3)
N(yll XZ)
N(y21 yll H)

Score
&
Parameterize




The Structural EM Procedure

Input: By = (G,,0,)

loop for n =0, 1,... until convergence

Improve parameters:
® ", =Parametric-EM (G,,0,,)
letB = (G0 )

Improve structure:
Search for a network B,,,; = (G,,1,0,+1) S-t.
E[Score(B,,;:D) | B',] > E[Score(B",:D) | B',]

Parametric-EM() can be replaced by Gradient Ascent,
Newton-Raphson methods, or accelerated EM.

Early stopping parameter optimization stage avoids
"entrenchment” in current structure.



Applications
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Appl: Expression Data Analysis

Reference:

* N.Friedman et al. Using Bayesian Networks to
analyze expression data. J. Comput. Biol., 7:601-620,
2000.

* A.Hartemink et al. Combining location and
expression data for principled discovery of genetic
regulatory network models. PSB 2002.



Motivation

* Extract meaningful information from gene
expression data.

— Infer regulatory mechanism.
— Reveal function of proteins.



Case 1: Cell-cycle Data

Yeast cell-cycle data (P.Spellman, Mol. Biol. of
the cell, 1998).

7 time series under different cell cycle
synchronization methods (alpha, beta factor,
CDC15, CDC24, CD(C28,cIn2,3).

6177 ORFs, 77 time points.

800 genes are identified related to cell cycle
process (big variation).



Bayesian Network Model

 Random Variables
— Individual genes
— Experimental condition
— Cell phase.

* Discretization: 3 levels, -1,0,1, depending on whether
the expression level is significantly lower than,
similar to, great than the respective control. However,
this may not be necessary (For continuous variable, a
linear Gaussian conditional model can be used).



Learning Bayesian Network (Cont.)

e Sparse candidate algorithm: identify small
number of candidate parents for each gene based

on simple local statistics (such as mutual
information).

e Bootstrap confidence estimation:

— Use re-sampling to generate perturbations of training
data.

— Use the number of times of feature is repeated among
networks from these datasets to estimate confidence
of Bayesian network features.



Sparse Candidate Algorithm

Input:

+ Adataset 0= {x'.__.. x ™}

< An initial network Ha.
+ A decomposable score

Scorel B | ) = ZJ Score s | Pa™ (.. 7).
+ A parameter &,

Oatput: A network &
Loop for pe = 1. 22 ... until convergence
Restrict
Based on £ and He_1. select for each variable %o a
st CFF ([CFF] = &) of candidate parents.
This defines a directed graph H,. = 1.1". £]. where
E={MN, = MW, 5 X, S C7 ).
( Mote that A 1= usually cyelic.)
Maximize
Find network e = (i, By maximizing
Scoref By | ) among networks that satisty e
_II-I:-L [i.l.'_"._ -"."'-_1";;_ Pﬂr_r'-"[_.l"l.--!] E o I:l.].

Feturn £,

Figure |: Outline of the Sparse Candidate algorithm



Estimate Feature Significance Bootstrap
Method

o Fore=1...m(inourexperiments, we set m = 200).

— Re-sample with replacement N instances from 2. Denote by [, the resulting dataset.
— Apply the learning procedure on [); to induce a network structure (7.

o Foreach feature [ of interest calculate

N
con(f) = = Y- 16

=]

where f((7)is 1if [ is a feature in &7, and 0 otherwise.



Markov Relation

e Pairs with 80% confidence were evaluated
against original clustering.

— 70% of these were intra-cluster.
— The rest show interesting inter-cluster relations.

* Most pairs are functionally related.



Markov Relation (Cont.)

Table 2: List of top Markov relations

Confidence | Gene | Cene 2 notes

|.0 YRLI63W-PIRS | YRLIGIC-PIRI | Close local ity on chromosoime

0.985 PRY2 YRKROI2C No homolog found

0.985 MCDI MSH& Both bind to DNA during mitosis

0.98 PHOT]I PHO 2 Both nearly identical acid phosphatases

0.975 HHTI HTBI Both are Histones

0.97 HTB2 HTAI Both are Histones

0.94 YINLOSTW YMNLOSRC Close locality on chromosome

0.94 YHRI43W CTs1 Homolog to EGT2 cell wall control, both do eytokinesis

0.92 YOR263C YOR264W Close locality on chromosome

0.91 Y GRORG SICH

0.9 FARI ASHI Both part of a mating type switch, expression uncorelated

.89 CLNZ SVl Function of 851 unknown, possible regulation mediated through 5W 16

.88 Y DRO3IW NCE2Z Homolog to transmembrame proteins, suggesting both involved in protein se-
cretion

.86 sTE2 MFAZ A mating factor and receptor

0.85 HHF I HHEF2 Both are Histones

0.85 METILD ECMILT Both are sulfite reductases

.85 CDCo RAD2Y Both participate in Okazaki fragment processing




Order Relation

Dominant gene: genes are indicative or
notential source of the cell-cycle process.

Dominance score: describing how strong that
one gene can be the ancestor of other genes
in the network.



Dominant Genes

Table 1: List of dominant genes in the ordering relations (top 14 out of 30)

Gene/ORF | Dominance | # of descendent genes

Score R notes
Y LR 530 551 0o Contains forkheaded assosiated domain, thus possibly nuelear
MCDI 550 599 Mitotic chromosome determinant, null mutant is inviable
CLMN2 497 405 Role incell cyele START, null mutant exhibits Gl arrest
SRO4 463 405 Involved in cellular polarization during budding
RFA2 456 429 Involved in nuclectide excision repair, null mutant is inviable
YOLOOTC 444 367
GAN] 433 82 Glyeophospholipid surface protein, Null mutant is slow growing
YOX1 400 243 : Homeodomain protein that binds leu-tRNA gene
Y LROI3W 308 309 531
POL3D 376 |73 520 Required for DNA replication and repair, Null mutant is inviable
RSR] 352 [ 40 461 GTP-binding protein of the ras family involved in bud site selection
CLNI 324 74 404 Role incell cyele START, null mutant exhibits G arrest
Y BROBOW 208 29 33
MSH& 284 7 a25 Required for mismatch repair in mitosis and meiosis

Cell cycle control and initiation: CLN1, CLN2, CDC5.
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Case 2: Pheromone and Mating
Response

* 6135 genes, 320 samples under different
conditions.

* 32 genes are selected.
— Pheromone response signaling pathway.
— Mating response.

* Location data (transcription factor and DNA
binding experiment, chip-chip data) are
included as prior constraints.



Genes Selected

Gene Crodar Mnemaniz Funeticn af Correspanding Pratein

ETE2 mngenta transmembrane ressepiar peptide [present anly in M1ATA strains)

ETE3 T transmembrane resptar peptide [presemt anly in M1AT ox strains)

GPaAl Broe pampanant af the heteratrimens G-protein [Ga)

ETEA Broect campanent af the heteratrimers G-protein (G 3]

ETElL& Ereen campanent af the heteratrimeris G-protein [G-y)

E1s83 blus mitagen-activated protein kinose (MAPK)

ELET yullaw MAPK kinnse [MAFKI)

ETELL yullaw MAPKK kinase (MAPKKI)

ETEn yellaw seaffolding peptide holding together Fued, Ste?, and Stell in o lnrge complex

ETEL2 blue transeriptional activatar

K581 Crange alternotive MAPK far pheromans response (in same dispute)

ETE2an DrangE pl-activated protein kinnse (FAK)

STERD orange unknewn functian bot necessary for proper funstian of Stell

MEFAL mingenta n-factar mating pheromans (present coly in MATo strains)

MFAZ mngenta n-factar mating pheramane (present coly in MATh strains)

MFALPHAL T a-factor mating pheromone [present anly in MAT o stroins)

MFALFHAZ Tz a-fnctor mating pheromone [present anly in MAT @ stooins)

ELER mngenta respoasible for the expart af p-Eectar fram MATs mlls [present anly in MATs strains)

FARI Hue substrnte of Fusl that leads to Gl arrest; known to bind to STES as pert of camplex
of prateins necessary far establishing =&l polarity required far shmea foemation
after mating signnl hes been recaived

EFsl blug reqpuired for cell Fusian during mating

AGAT blus anchor subunit of a-agglutinin complex; medintes attachment of Agad to el surface

AL AZ mngenta hinding subunit of p-ngglutinin complex; imalved in eellom=ll ndhesion during
mating by binding Sagl (present only in MATa strains)

2AG1 T hinding subunit of a-agglatinin complex; involved in cell-cell adhesicn during
meting by hinding Agad [present only in MAT e straing; alsa known ss Agal)

BARL mngenta protense degrading cx-Eactor (present only in BMATo st rains)

2=Ta imrolverd in desensitization to mating pheromone exposure

[EARS sssmntial far nudenr migratian step of karpogamy

TEC transeriptional activatar baliewved ta bind ccopemmtively with Stel2 [mare actne:
during inductian of filameamtous ar inwasive growth responss)

MR transeription fartor believed to bind cocperatively with Stel2 {more active
during industion of pheramane respansa)

ElNa impliented in induction or epression of oumercus genes in pheramane response pathwoy

TUR1 implicaterd in repressian of oumeroos genes in pheramane respanse pathwmy

ENFD LA implizated in inductian of oumerous genes in pheramanes respanse potbmmy
{ecmponent af SWI-ENF global transeription activator complex)

WL LA implicated in induction of oumercus genes in pheramane respanse pathmmy

{eomponent af EW1-SNF global transeription activator complex)



Location Analysis (Chip-chip)

eCrosslink protein to DNA
in vivo with formaldehyde

|wiysisAje

ueuolledo|/qnd/3unoA/npa‘wim-apisul//:dny

*Break open cells and
shear DNA

eImmunoprecipitate

eReverse-crosslinks,
blunt DNA and ligate
to unidirectional linkers

*LM-PCR

eHybridize to array



Bayesian Network Model

 Random variables
— 32 genes.
— Mating type (Mata, Mata).

e Discrimination: to 4 levels while preserving over 98%
of the original total mutual information between
pairs of genes.

* Location data: set the constraints specifying which
edges are required to be present and which are
required to be absent.



Learning Bayesian Network

Score: Bayesian score metric (BSM).

Local heuristic searching algorithm: simulated
annealing.

Caching: keeping the top 500 structures
recorded.

Feature induction: Average features within top
500 structures.



Learning Bayesian Network (Cont.)

plE sy | L) Z plExy | DS) - p(S|D)

e
Z Ly (S . BSM(S)
=

Approximation:

N
z l;.l.;vll-"-",';l _ L,ESMI[.‘-‘;]

=1

plloxy | DY) = v
3 BSM(S,)
—



Learned Network Without Constraint

Node color: Different function.

Edge color:Solid black (0.99-1.0), dash blue (0.75-0.99),
dot blue (0.5-0.75).



Learned Network With Constraints

Constraints
included:

STE12

!

FUS1

FUS3

AGAl
FAR1




App2. Bayesian Classifier

e Reference:

— N.Friedman. Building classifier using Bayesian
networks. Proc. NCAI 1277-1284, 1996.

— 0O.D.King et al. Predicting Gene Function From
Patterns of Annotation. Genome Research 13:
896-904, 2003.



Basic Problem

e Given a dataset

{(X,c) (x;€),... ,(Xy.1€), (Xy )}

— Here X stands for the training data,c stands for the class
label,assuming we have m classes,

— We estimate the probability.
P(C. |X), i=1,2,...,m
— The classifier is then denoted by:

arg max P(C; | X)

How can we estimate the posterior probability?



Nalve Bayesian Network

* Assumption: all the variables are independent,
given the class label.

* Joint distribution. P(v,v,..v, ,,v,)|C)= P(v|C)

¥ 2 ¥

Figure 1. The structure of the naive Baves network.



Tree Argumented Naive Bayes (TAN)
Model

* Bayesian network with the class as the root,
will each attribute’s parent set contain class
and at most one other attribute.

Pregnant

Insulin

Figure A A TAN mesdel bearmed for the data set “pama” The dashed Bnes ane those edges nequamed
by the naive Bayesian dassfier. The scid Enes ane correlation edges between abtmibates.



GO Function Prediction

* Motivation: GO is the controlled vocabulary of
gene functions. Predict gene function by the
pattern of annotation.

* |dea: If the annotation of two attribute tend to
occur together in the database, then a gene
holding one attribute is likely to hold the other
as well.



Gene Ontology Structure

search GO:
(*) Termz ()Gene Products

Top Docs Gene Ontology GO Links GO Summary

E60:0003673 : Gene Ontology (6448) &
E @ GO:0008150 : biological process (644T7) @&

® GO:0007610 : behavior (1)

« @ G0:0000004 : biological process unknown (1893)

El @ GO-000998T - cellular process (2257) &
@ GO0:0007154 : cell communication (175)
@ GO:0008219 : cell death (24)
@ GO:0030154 : cell differentiation (0)
@ GO:0008151 : cell growth and/or maintenance (2168)

@ GO:O00B928 : cell motility (0)
@ GO:0006944 : membrane fusion (33)
@ GO 000TETE develupment (241)
@ G0:0008371 : obsolete biological process (0]
@ GO:000TER2 : phvsiological processes (4520)
@ GO:0016032 @ viral 1ife cycle (1)
@ GO:0005575 : cellular component (R436)
® G0:0003674 : molecular function (6435)




Formalization

* GO attributes j. Xindicate function. X,(i)=1 if gene is
annotated with j.

* Attribution set nad(x;): neither ancestor nor
descendant attribute of one attribute j in the GO
DAG.

* The task is to estimate the probability

qiui)y = PriX; =1 | nadiX;) = nad () ()



Bayesian Network Model

* Nodes: GO attribute covers more than 10
genes, and no descendant covers more than
10 genes.

— SGD, 170.
— FlyBase, 218.

* Constraints: just considering those structures
logically consist with GO DAG.



Fragment of Learned Bayesian
Network
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Further Reading

* N.Friedman et al. A structural EM algorithm
for phylogenetic inference. RECOMBZ2001.

* E.Segal et al. From promoter sequence to
gene expression data. RECOMB200_2.

e E.Segal. Regulatory module. Nature Genetics
34: 2003.



Bayesian Network Sourses

* Peoples

— N.Friedman http://www.cs.huji.ac.il/~nir/

— D.Heckman
http://www.research.microsoft.com/~heckerman/

— J. PEARL http://bayes.cs.ucla.edu/jp home.html
— FV.Jensen http://www.cs.auc.dk/~fvj/



http://www.cs.huji.ac.il/~nir/
http://www.research.microsoft.com/~heckerman/
http://bayes.cs.ucla.edu/jp_home.html
http://www.cs.auc.dk/~fvj/

Bayesian Network Sourses

* Bayesian Network Repository

http://www.cs.huji.ac.il/labs/compbio/Repository/.

* Systems

— Bayesian Networks Software Package listing
http://www.cs.berkeley.edu/~zuwhan/bn.html.

— Microsoft Belief Network Tools
http://www.research.microsoft.com/research/dtg/msbn/

— Hugin http://hugin.dk/



http://www.cs.huji.ac.il/labs/compbio/Repository/
http://www.cs.berkeley.edu/~zuwhan/bn.html
http://www.research.microsoft.com/research/dtg/msbn/
http://hugin.dk/

Case 3: ICU predictions

BMREXRG
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Circardian clock regulation
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Bayesian Network

Main fuze Battery age Alternator
okay 990 j— MEt ETii = Okay  99.7 p——
blown 1.0 ald 0.0 Faulty 0.30
very_old 20.0 pm: 4{
Charging system
Okay  49.5 -
Faulty 50,2 e
Distributer : Yol tagg ;t p.l u:g t Batte;:; rnl t.age
- strang . - strong . '
Ekﬂ]&'t 9?-8 weak 17.0m weak  17.5 jm
ay T none <459 - dead 1.0 j
Spark plugs \
akay F0.0 j—— Headlight
too_wide 10,0 _ e LS
fouled  20.0 bright 3&.7 e
dim 17.2m:
Y s off 440 e
] Spark qualitu_
i mi ood 25 i
Spark timing _ Tad 233 Fuel system
%‘;‘;‘j 39213 very_bad 51.2 Okay 900
wery_bad 1.49 Faulty 10.0
Starter Motor | Starter system
Okay 995 —— Okay  S59.6 m—
Faulty 0.50 Faulty <0<
T
Car cranks
True 49.7 -
Falze S0.75

Air filter

clean 90.0
dirty 10.0

Y

Air system

Okay
Faulty

g0
16.0

L ]

Car starts

P True 250
Falze 72.0




Bayesian Network in biology

Samples

'Expressio

. e

n matrix|

v

Clustering using WGCNA
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Computing eigengenes using PCA

Bayesian Network Leaning
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dynamic

Time-course
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A ; Bayesian network
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measure biological information @
mRNAs with bootstrapping
KD Information: —
Treatment o ‘ Analysis:| iNet
shocks Which genes are i
chemical compound knocked-down |
Possible regulatory s o eeer
e — relations =
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Gene knock-down

library

Gene knock-down
expression data
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