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课程安排
• 生物背景和课程简介

• 传统生物统计学及其应用

• 生物统计学和生物大数据挖掘

– Hidden Markov Model (HMM)及其应用
• Markov Chain

• HMM理论

• HMM和基因识别 (Topic I)

• HMM和序列比对 (Topic II)

– 进化树的概率模型 (Topic III )

– Motif finding中的概率模型 (Topic IV)
• EM algorithm

• Markov Chain Monte Carlo (MCMC)

– 基因表达数据分析 (Topic V)
• 聚类分析-Mixture model

• Classification-Lasso Based variable selection

– 基因网络推断 (Topic VI)
• Bayesian网络

• Gaussian Graphical Model

– 基因网络分析 (Topic VII)
• Network clustering

• Network Motif

• Markov random field (MRF)

– Dimension reduction及其应用 (Topic VIII)

• 面向生物大数据挖掘的深度学习

研究对象: 
生物序列, 
进化树, 
生物网络, 
基因表达
…

方法：
生物计算与生物统计



第7章: Regulatory Network

• Regulatory network

• Reverse engineering

• Bayesian network



Part I: Regulatory Network

Lee et al. Science 2002.



Scale-free network



Scale-free network



Scale-free network



Regulatory Network



Regulatory Network



Transcription Regulatory Code

• Each gene is regulated by a set of TFs.

• Each TF can regulate many genes.

• Which genes are regulated by which TFs on 
which conditions?

• How does regulator control the expression of 
its target gene?



How to Clarify Transcription Regulatory 
code ?

In  silico.

• From sequence to gene 
regulatory network.

• Find all the potential TFBS 
upstream a gene.

• Predict gene expression 
from gene sequence. 
Cell,2004.

Experimental methods

• Gel shift

• DNA footprinting.

• Reporter genes

• ….

Too much noise!

Not large scale

Not systematic



ChIP-chip Experiments

Identify all the target genes that can be directly or 

indirectly bind by a TF.



ChIP-chip Experiments



ChIP-chip Experiments



Protein-DNA Interactions

Lee, et al. Science, 2002.



ChIP-chip Experiments

• 1 condition , 1 TF
Jason et.al. Nature (2001). Promoter-specific binding of 

Rap1 revealed by genome-wide maps of protein-DNA 
association.

• 1 condition, 106 TFs
Lee et.al. Science(2002). Transcription regulatory networks 

in Saccharomyces cerevisiae

• Multiple conditions , 203 TFs.

Harbison, et.al. (2004). Transcription regulatory code of a 
eukaryotic genome.

http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi?s=17&f=downloaddata


Lee, et al. Science, 2002.



Lee, et al. Science, 2002.



Multiple Conditions
*All regulators 

were profiled 

in rich 

medium 

*A subset of these 

were profiled 

in at least one 

of 12 other 

environmental 

condition

Harbison et al. 
Nature 2004.



Part II: Reverse Engineering

• Given: a (large) set of gene expression observations
• Goal: find the network fits that observation data.

• References:
– Gardner, di Bernardo, Lorenz, and Collins. Inferring Genetic 

Networks and Identifying Compound Mode of Action via 
Expression Profiling. Science 301, pp.102-105 (2003)

– Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene van 
Someren, Reinhard Guthke. Gene regulatory network inference: 
Data integration in dynamic models—A  review. BioSystems 96 
(2009) 86–103.



Reverse Engineering



Reverse Engineering



DREAM Project

• DREAM: Dialogue for Reverse Engineering 
Assessments and Methods. 

• Objective: To catalyze the interaction between 
experiment and theory in the area of cellular 
network inference and quantitative model 
building in systems biology.

• http://dreamchallenges.org/

• http://dreamchallenges.org/challenges/
(current DREAM)

http://dreamchallenges.org/
http://dreamchallenges.org/challenges/


Modeling Expression with Differential 
Equations

Assumes network behavior can be modeled as a system of 
linear differential equations of the form:

dx/dt = Ax + u

x is a vector representing the continuous-valued levels 
(concentrations) of each network component

A is the network model: an N x N matrix of coefficients 
describing how each xi is controlled by upstream genes xj, xk, 
etc.

u is a vector representing an external additive perturbation to 
the system



An example:
From discrete- to continuous-valued networks

dx/dt = Ax + u
dx1/dt = a12x2 - a13x3

dx2/dt = a21x1

dx3/dt = a32x2

x1 x2 x3

x1 x2 x3

Three genes: x1, x2, x3

x1 activates x2

x2 activates x1 and x3

x3 inhibits x1
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The steady state assumption

• Near a steady-state point, expression levels do not change 
over time.

• Under the steady-state assumption, the model reduces to 0 = 
Ax + u  Ax = -u

• A straightforward method to infer A would be to apply N
perturbations, u, to the network, in each case measuring 
steady-state expression levels for the x. 

• However, in larger networks it may be impractical to apply so 
many perturbations

• As a simplifying assumption, consider that each gene has a 
maximum of k non-zero regulatory inputs.



The Inference Procedure

Ax = -u

• Infer inputs to each gene separately

• For the given gene, consider all possible 
combinations of the k regulatory inputs

• For each combination, use multiple linear 
regression to determine optimal values of the 
k coefficients

• Choose the combination that fits the observed 
data with the least error



Multiple regression

x

u 

u = -Ax

A is the fit

x1

u



Application to SOS System

Gardner, di Bernardo, Lorenz, and Collins. Inferring Genetic Networks and Identifying 
Compound Mode of Action via Expression Profiling. Science 301, pp.102-105 (2003)



Part III: Bayesian Network

• 本部分Slides主要来自于N.Friedman and 
D.Heckman’s slides.

• References: 

• N.Friedman et al. Using Bayesian Networks to 
analyze expression data. J. Comput. Biol.,
7:601-620, 2000.



Motivation

• Given gene expression data, what’s the 
relationship between genes?

– Who regulates who?

– How does one gene regulate other gene?

• Exploring the relationship among features to 
construct a better classifier instead of treating 
them independently.



Bayesian Network

• Directed acyclic graph (DAG).

– Nodes: random variables.

– Edges: direct influence.

• Set of conditional probability distributions.

• Joint distribution.



Bayesian Networks: Example

Earthquake Burglary

Alarm
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Family of Alarm
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隐马氏模型的数学问题

• 识别问题－已知若干个隐马氏模型及其参

数，对一个观测样本，决定它来自哪一个
模型。

• 解码问题－由观测样本得到隐状态；

• 学习问题－由观测样本得到参数组 l ；



Bayesian Network

• 初级：参数学习

• 中级：图分解

• 高级：近似算法

• 特级：EM算法



Learning Problems

• Estimation of the parameters.

• Construct the structure.

Let’s start from the basic parameter estimation 
problem.



A: Learning Parameters



Simple Case: Binomial Experiment



Likelihood Function



Sufficient Statistics



Maximum Likelihood Estimation (MLE)

• MLE principle: Learn parameters that 
maximize the likelihood function.

• This is one of the most commonly used 
estimation in statistics (Classical approach) 
and intuitively appealing.



MLE In Binomial Case



MLE is Not Enough



Bayesian Inference



Bayesian Inference

• Representing uncertainty about parameters using a 
probability distribution over parameters, data.

• Using Bayes’ rule to learn.

– Data (D) and their probability distribution

– Prior distribution



Binomial Experiment Revised



Beta Distribution



MAP (Maximum A-Posterior 
Probability)

• Using MAP,  we can obtain an estimation of 
the parameter

• Recall that the MLE is 



Intuition

• The hyperparameters aH and aT can be 
thought of imaginary counts (psudo-counts) 
from our experience.

• Equivalent sample size= aH + aT.

• The larger the equivalent sample size, the 
more confident we are about the true 
probability.



Bayesian Inference vs. MLE



Bayesian Inference vs. MLE (Cont.)

• In our example, MLE and Bayesian prediction 
differ.

• However, If prior is well-behaved (does not 
assign 0 density to any feasible parameter 
value), then both MLE and Bayesian prediction 
converge to the same value, the ”true”
distribution.



Bayesian Network

• 初级：参数学习

• 中级：图分解

• 高级：近似算法

• 特级：EM算法



Learning Parameters
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• Training data has the form:



Likelihood Function

E B

A

C

• Assume i.i.d. samples

• Likelihood function is
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Likelihood Function

E B

A

C

• By definition of network, we get
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Likelihood Function

E B

A

C

• Rewriting terms, we get





















m

m

m

m

m

mAmCP

mEmBmAP

mBP

mEP

mCmAmBmEPDL

):][|][(

):][],[|][(

):][(

):][(

):][],[],[],[():(























][][][][

]1[]1[]1[]1[

MCMAMBME

CABE

=

4 Subnetworks



General Bayesian Networks

Generalizing for any Bayesian network:
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The likelihood  decomposes to small ones 
according to the structure of the network.



General Bayesian Networks (Cont.)

• Decomposition  Independent 
estimation problems

• If the parameters for each family are not 
related, they can be estimated 
independently of each other.



From Binomial to Multinomial



From Beta to Dirichlet Distribution



From Beta to Dirichlet Distribution 
(Cont.)



Likelihood for Multinomial Network



Bayesian Inference for 
Multinomial Network

• Given data, we can compute the posterior for each 
multinomial independently. The posteriors are also 
Dirichlet with parameters

• The predictive distribution is then represent by 
parameters



More Generalizations

• Likelihood from exponential family.

– Binomial distribution

– Multinomial distribution

– Poisson distribution

– Gamma distribution

– Normal distribution

• Conjugated distributions.



Learning Parameters: Summary

• Estimation relies on sufficient statistics

– For multinomials: counts N(xi,pai)

– Parameter estimation

• Both are asymptotically equivalent.
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MLE Bayesian (Dirichlet)



B. Learning Structure From Data



Bayesian Network

• 初级：参数学习

• 中级：图分解

• 高级：近似算法

• 特级：EM算法



近似算法

• 从所有的网络结构空间进行搜索最优网络
结构是一个NP问题，难以快速求解。

• 有两种常用的方法快速求解：

–贪心算法：假设现有结构为最优，每次调整一
条边（增加、删除、改变方向）直到评分函数
值最低为止

–直接通过网络结构增加约束来减少搜索空间，
例如将网络结构限定为树形结构等



Why Struggle for Accurate Structure?

• Increases the number of 
parameters to be estimated

• Wrong assumptions about 
domain structure

• Cannot be compensated for by 
fitting parameters

• Wrong assumptions about 
domain structure

Earthquake Alarm Set

Sound

Burglary

Earthquake Alarm Set

Sound

Burglary Earthquake Alarm Set

Sound

Burglary

Adding an arcMissing an arc



Scorebased Learning

E

A

E

B

A

E

B
A

Search for a structure that maximizes the score

Define scoring function that evaluates how well a 
structure matches the data

E, B, A

<Y,N,N>

<Y,Y,Y>

<N,N,Y>

<N,Y,Y>

.

.

<N,Y,Y>

B



Score Function I

Which structure is good?

• BDe scores (Heckman)

)(log)|(),|(log):BDe( GPdGPGDPDG  

Marginal likelihood Structure Prior



Marginal Likelihood 
(Multinomial Case)

• If data are complete, we can obtain the close form.



Practical Consideration

Super exponential number (in the number of 
variables) of possible structures.

• How do we find the best graphs?

• How do we assign structure and parameter 
priors to all possible graphs?



Structure Prior Choice

• All possible structures are equally likely.

• Fix (or forbid) some arcs.

• Choosing a prior proportions to the similarity 
to a prior network structure.



Model Selection

• Theorem: finding the best BN structure among 
those structures with at most k parents in NP-
hard problem (k>1).

• Heuristic searching

– Greedy

– MCMC



Score Function II

Which structure is good?

• BIC/MDL scores

– BIC: Bayesian Information Criterion.

– MDL: Minimum Description Length.

G
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2

log
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Complexity 
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Minimum Description Length 
Principle

• Universal coding.

– Description length of the compressed form 
(model) of data.

– Description length of the model itself used in 
the compression.



Minimum Description Length 
Principle (Cont.)

• Bayesian network case.

– Modeling of data (Probability distribution).

– Network coding (number of parameters).

See: N.Friedman. Learning Bayesian networks 
with local structure.



Decomposability

• Key property of the Bayesian network with 
complete data.

score(G) =   score ( family of X in G )



Tree-structured Networks

Trees: At most one parent 
per variable.

Why trees?

• Elegant math=>we can 
solve the 
optimization problem

• Sparse 
parameterization to 
avoid over-fitting
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Learning Trees

• Let p(i) denote parent of Xi

• The Bayesian score can be written as sum of 
edge scores.

Score of “empty”
network

Improvement over 
“empty” network
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Learning Tree

• Set edge weight as: Score( Xj  Xi ) - Score(Xi).

• Well studied Problem in graph theory: Find the tree 
with maximum weight. It can be solved by maximum 
spanning tree algorithm (MST) in an efficient way.



Kruskal’s Algorithm on MST

begin Kruskal;

sort the arcs in A in decreasing order of their weights;

LIST = ;

while |LIST| < n – 1 do

begin

if the next arc does not create a cycle then add  

it to LIST

else discard it

end;

end;



Heuristic Search: Beyond Trees

• Define a search space:

– search states are possible structures

– operators make small changes to structure

• Search techniques:

– Greedy hill-climbing

– Best first search

– Simulated Annealing

– ...



Local Search

• Start with a given network

– empty network

– best tree 

– a random network

• At each iteration

– Evaluate all possible changes

– Apply change based on score

• Stop when no modification improves score



Typical Operations In Heuristic Search

S C

E

D

S C

E

D

S C

E

D

S C

E

D
score = 

S({C,E} D) 

- S({E} D) 

To update score after local change, 

only re-score families that changed



Local Search: Possible Pitfalls

• Local search can get stuck in:

– Local Maxima:

• All one-edge changes reduce the score

– Plateaus:

• Some one-edge changes leave the score 
unchanged



Escape From Traps

• Random restarts.

• Simulated annealing

– Take the bad score with probability proportion 
to exp(score/t).

– Cool down slowly.



Discovering Structure

• Current practice: model selection

– Pick a single high-scoring model

– Use that model to infer domain structure

E
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C

P(G|D)



Discovering Structure

Problem
– Small sample size  many high scoring models
– Answer based on one model often useless.
– We want features common to many models.

P(G|D)
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Bayesian Approach

• Posterior distribution over structures

• Estimate probability of  features

– Edge XY

– Path X…  Y

– …


G
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Feature of G,

e.g., XY
Indicator function

for feature f

Bayesian score

for G



Practical Implementation

• Bootstrap method.
– Randomly generate m “perturbed” sample sets. 

– For each sample set, choose a best model Gi.

– Average the feature among these m structures.
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C: Dealing With Missing Data

1. Structure known, how to learn the  

parameters?

2. Structure unknown, how to learn the 

structure and parameters?



Bayesian Network

• 初级：参数学习

• 中级：图分解

• 高级：近似算法

• 特级：EM算法



Incomplete Data

Data is often incomplete

• Some variables of interest are not assigned values.

This phenomenon happens when we have 

• Missing values:
– Some variables unobserved in some instances

• Hidden variables:
– Some variables are never observed

– We might not even know they exist



Hidden (Latent) Variables

• Why should we care about unobserved 
variables?

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

17 parameters

17=1+1+1+8+2+2+2

27 parameters

27=1+1+1+8+8+8
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More Computation

• The likelihood of the data does not
decompose.

• Complete data.

• Incomplete data.



Learning Parameters With Incomplete 
Data

• Expectation maximization (EM) iteration 
algorithm is the general purpose method for 
learning from incomplete data.

– E-Step. 

– M-Step. 



EM Intuition

• If we had true counts, we could estimate parameters.

• But with missing values, counts are unknown.

• We “complete” counts using probabilistic inference 
based on current parameter assignment.

• We use completed counts as if real to re-estimate 
parameters.



EM Algorithm
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EM Algorithm (Cont.)

Training

Data

X1 X2 X3

H

Y1 Y2 Y3

Initial network 
(G,0)



Expected Counts
N(X1)
N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

(E-Step)

X1 X2 X3

H

Y1 Y2 Y3

Updated network (G,1)

Reparameterize

(M-Step)

Reiterate

X1 X2 X3

H

Y1 Y2 Y3



EM Algorithm (Cont.)

Formal Guarantees:

• L(1:D)  L(0:D)
– Each iteration improves the likelihood

• If 1 = 0 , then 0  is a stationary point of 
L(:D)
– Usually, this means a local maximum



Computational Bottleneck

Computation of expected counts in E-Step

– Need to compute posterior for each unobserved 
variable in each instance of training set.

– All posteriors for an instance can be derived from 
one pass of standard BN inference.



Summary: Parameter Learning
With Incomplete Data

• Incomplete data makes parameter estimation hard

• Likelihood function

– Does not have closed form

– Is multimodal

• Finding maximum likelihood parameters:

– EM

– Gradient ascent

• Both exploit inference procedures for Bayesian 
networks to compute expected sufficient statistics



Incomplete Data: Structure Scores

With incomplete data:

• Cannot evaluate marginal likelihood in closed form.

• We have to resort to approximations:

– Evaluate score around MAP parameters

– Need to find MAP parameters (e.g., EM)
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Recall, Bayesian score:



Naïve Approach

• Perform EM for each candidate graph.

• Computationally expensive:

– Parameter optimization via EM — non-trivial

– Need to perform EM for all candidate structures

– Spend time even on poor candidates

• In practice, considers only a few candidates.



Structural EM

Recall, in complete data we had
–Decomposition  efficient search.

Idea: 

• Instead of optimizing the real score…

• Find decomposable alternative score.

• Such that maximizing new score 
improvement in real score.



Structural EM (Cont.)

Idea:

• Use current model to help evaluate new structures

Outline:

• Perform search in (Structure, Parameters) space.

• At each iteration, use current model for finding either:
– Better scoring parameters: “parametric” EM step.

– Better scoring structure: “structural” EM step.



Structural EM Steps

Assume B0 = (G0,0) is “current” hypothesis.

Goal: Maximize expected score, given B0

where D+ denotes completed data sets.

Theorem:(progress)

If E[Score(B : D+) | D,B0] > E[Score(B0 : D+) | D,B0]

 Score(B : D) > Score(B0 : D).

• This implies that by improving the expected score, we find 

networks that have higher objective score.
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Structural EM for BIC/MDL

For the BIC/MDL score, we get that

Consequence:

• We can use complete-data methods, where we use expected 
counts, instead of actual counts.
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Training
Data

Expected Counts
N(X1)
N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

H

Y1 Y2 Y3

Score 
&

Parameterize

X1 X2 X3

H

Y1 Y2 Y3

Reiterate

N(X2,X1)
N(H, X2, X3)
N(Y1, X2)
N(Y2, Y1, H)

X1 X2 X3

H

Y1 Y2 Y3



The Structural EM Procedure

Input: B0 = (G0,0)

loop for n  0,1,… until convergence

Improve parameters:

`n  Parametric-EM (Gn,n )

let B`n= (Gn`,`n)

Improve structure:

Search for a network Bn+1 = (Gn+1,n+1) s.t.

E[Score(Bn+1:D) | B`n] > E[Score(B`n:D) | B`n] 

• Parametric-EM() can be replaced by Gradient Ascent, 
Newton-Raphson methods, or accelerated EM.

• Early stopping parameter optimization stage avoids 
“entrenchment” in current structure.



Applications



App1: Expression Data Analysis

Reference:

• N.Friedman et al. Using Bayesian Networks to 
analyze expression data. J. Comput. Biol., 7:601-620, 
2000.

• A.Hartemink et al. Combining location and 
expression data for principled discovery of genetic 
regulatory network models. PSB 2002.



Motivation

• Extract meaningful information from gene 
expression data.

– Infer regulatory mechanism.

– Reveal function of proteins.

– ……



Case 1: Cell-cycle Data

• Yeast cell-cycle data (P.Spellman, Mol. Biol. of 
the cell, 1998). 

• 7 time series under different cell cycle 
synchronization methods (alpha, beta factor, 
CDC15, CDC24, CDC28,cln2,3).

• 6177 ORFs, 77 time points.

• 800 genes are identified related to cell cycle 
process (big variation).



Bayesian Network Model

• Random Variables
– Individual genes

– Experimental condition

– Cell phase.

• Discretization: 3 levels, -1,0,1, depending on whether 
the expression level is significantly lower than, 
similar to, great than the respective control. However, 
this may not be necessary (For continuous variable, a 
linear Gaussian conditional model can be used).



Learning Bayesian Network (Cont.)

• Sparse candidate algorithm: identify small 
number of candidate parents for each gene based 
on simple local statistics (such as mutual 
information).

• Bootstrap confidence estimation:
– Use re-sampling to generate perturbations of training 

data.

– Use the number of times of feature is repeated among 
networks from these datasets to estimate confidence 
of Bayesian network features.



Sparse Candidate Algorithm



Estimate Feature Significance Bootstrap 
Method



Markov Relation

• Pairs with 80% confidence were evaluated 
against original clustering.

– 70% of these were intra-cluster.

– The rest show interesting inter-cluster relations.

• Most pairs are functionally related.



Markov Relation (Cont.)



Order Relation

• Dominant gene: genes are indicative or 
potential source of the cell-cycle process.

• Dominance score: describing how strong that 
one gene can be the ancestor of other genes 
in the network. 



Dominant Genes

Cell cycle control and initiation: CLN1, CLN2, CDC5.

……





Case 2: Pheromone and Mating 
Response

• 6135 genes, 320 samples under different 
conditions.

• 32 genes are selected.
– Pheromone response signaling pathway.

– Mating response.

• Location data (transcription factor and DNA 
binding experiment, chip-chip data) are 
included as prior constraints.



Genes Selected



Location Analysis (Chip-chip)

•Crosslink protein to DNA
in vivo with formaldehyde

•Break open cells and
shear DNA

•Immunoprecipitate

•Reverse-crosslinks,
blunt DNA and ligate
to unidirectional linkers

•LM-PCR

•Hybridize to array

h
ttp

://in
sid

e.w
i.m

it.ed
u

/yo
u

n
g

/p
u

b
/lo

catio
n

an
alysis.h

tm
l



Bayesian Network Model

• Random variables
– 32 genes.

– Mating type (Mata, Mata).

• Discrimination: to 4 levels while preserving over 98% 
of the original total mutual information between 
pairs of genes. 

• Location data: set the constraints specifying which 
edges are required to be present and which are 
required to be absent.



Learning Bayesian Network

• Score: Bayesian score metric (BSM).

• Local heuristic searching algorithm: simulated 
annealing.

• Caching: keeping the top 500 structures 
recorded.

• Feature induction: Average features within top 
500 structures.



Learning Bayesian Network (Cont.)

Approximation:



Learned Network Without Constraint

Node color: Different function.

Edge color:Solid black (0.99-1.0), dash blue (0.75-0.99), 
dot blue (0.5-0.75).



Learned Network With Constraints

STE12

FUS1

FUS3

AGA1

FAR1

Constraints 
included:



App2. Bayesian Classifier

• Reference:

– N.Friedman. Building classifier using Bayesian 
networks. Proc. NCAI 1277-1284, 1996.

– O.D.King et al. Predicting Gene Function From 
Patterns of Annotation. Genome Research 13: 
896-904, 2003.



Basic Problem
• Given a dataset 

{(X1,c), (x2,c),… ,(XN-1,c), (XN,c)}

– Here Xi stands for the training data,c stands for the class 
label,assuming we have m classes,

– We estimate the probability.

P(Ci |X), i=1,2,…,m 

– The classifier is then denoted by:

How can we estimate the posterior probability?

)|(maxarg XCP i
i



Naïve Bayesian Network

• Assumption: all the variables are independent, 
given the class label.

• Joint distribution. )|()|),...,(( 121 CvPCvvvvP i
i
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Tree Argumented Naive Bayes (TAN) 
Model

• Bayesian network with the class as the root, 
will each attribute’s parent set contain class 
and at most one other attribute.



GO Function Prediction

• Motivation: GO is the controlled vocabulary of 
gene functions. Predict gene function by the 
pattern of annotation. 

• Idea: If the annotation of two attribute tend to 
occur together in the database, then a gene 
holding one attribute is likely to hold the other 
as well.



Gene Ontology Structure



Formalization

• GO attributes j.  Xj indicate function. Xj(i)=1 if gene is 
annotated with j.

• Attribution set nad(xj): neither ancestor nor  
descendant attribute of one attribute j in the GO 
DAG.

• The task is to estimate the probability



Bayesian Network Model

• Nodes: GO attribute covers more than 10 
genes, and no descendant covers more than 
10 genes.

– SGD, 170.

– FlyBase, 218.

• Constraints: just considering those structures 
logically consist with GO DAG.



Fragment of Learned Bayesian 
Network



Further Reading

• N.Friedman et al. A structural EM algorithm 
for phylogenetic inference. RECOMB2001.

• E.Segal et al. From promoter sequence to 
gene expression data. RECOMB2002.

• E.Segal. Regulatory module. Nature Genetics 
34: 2003.



Bayesian Network Sourses

• Peoples
– N.Friedman http://www.cs.huji.ac.il/~nir/

– D.Heckman 
http://www.research.microsoft.com/~heckerman/

– J. PEARL http://bayes.cs.ucla.edu/jp_home.html

– F.V.Jensen http://www.cs.auc.dk/~fvj/

– ……

http://www.cs.huji.ac.il/~nir/
http://www.research.microsoft.com/~heckerman/
http://bayes.cs.ucla.edu/jp_home.html
http://www.cs.auc.dk/~fvj/


Bayesian Network Sourses

• Bayesian Network Repository
http://www.cs.huji.ac.il/labs/compbio/Repository/.

• Systems
– Bayesian Networks Software Package listing

http://www.cs.berkeley.edu/~zuwhan/bn.html.

– Microsoft Belief Network Tools 
http://www.research.microsoft.com/research/dtg/msbn/

– Hugin http://hugin.dk/

– ……

http://www.cs.huji.ac.il/labs/compbio/Repository/
http://www.cs.berkeley.edu/~zuwhan/bn.html
http://www.research.microsoft.com/research/dtg/msbn/
http://hugin.dk/


Case 3: ICU predictions

概率专家系统
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Circardian clock regulation



# parameters



Bayesian Network
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Bayesian Network in biology
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Regulatory Network
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