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* Experimental methods
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* Prediction of protein-protein interactions



Part I: Experimental Methods

* Physical interaction
— Yeast two hybrid system
— TAP-mass spectrometry

* Genetic interaction

— SGA
— EMAP



Protein-protein interactions
(Experimental methods)

* Co-immunoprecipitation.

* Two-hybrid system (Uetz et al. 2000, Ito et al.
2000, 2001).
e Purified Complex by mass spectrometry

— TAP: Tandem affinity purification (Gavin et al.
2002).

— HMS-PCI: high-throughput mass spectrometric
protein complex identification (Ho et al. 2002).



Mechanism of two-hybrid system

Mo interaction

Gal d—hinding site Freanaarter gens

Fositive Imteractiosn

mcreasaed tramscnpobion

EAl4—Cinding ste Faportar gens

From: Nature 405, June 15, 2000, 837-846.



Mass Spec

......

Gavin et al. (2002) Nature 415:141



Mass spectrometry
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Matrix method (two hybrid)

Pray| P1P2P3 P4 P§ Pray| P1P2P3 P4 P§
Bait it

B B (00000
B2 ., 2 100000
ik B 0000C
bd B 00000
B 85 100000

From: TRENDS in Genetics Vol.17, No.6, June 2001.



Interaction Sequence Tags (ISTs)
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From: Nature 405, June 15, 2000, 837-846.



Two data sets from yeast two
hybrid system

* Uetz's data (Uetz et al.
2000).

* |to’s data (Ito et al. @

2000, 2001).

Ito’ s data Uetz’ s data



Possible Errors in 2-hybrid system

* False positive.
— Possible mutation during PCR-amplifying.
— Stochastic activation of reporter gene.

* False negative.

— Membrane protein, post-translational modification protein,
those self-activating reporter genes (Removed in
experiment).

— Weak interactions.

The size of interactome for yeast (5-50/protein)



Frequency

Distribution of the pairwise correlation coefficients of gene expression

0.2

0.18

T

0.16

0.14

0.12

<
-
I

0.08

0.06

I

0.04

0.02

T

mlo

| Misl

0
-1

-0.8

-0.6

T

-0.4

I I I I

| | |

Hl Random protein pairs
[ 1 Predicted PPIs (fn=0.80)
[ ] Uetz+lto PPIs

Bl MIPS PPls

-0.2 0 0.2 0.4 0.6 0.8 1
Expression correlation coefficient




Distribution of the pairwise correlation coefficients of gene expression: Random pairs Distribution of the pairwise correlation coefficients of gene expression: MIPS Complex Pairs
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MLE of the reliability

e Likelihood function
i
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e Precision of the estimation
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Budding Yeast
Saccharomyces Cerevisiae

cell wall

mitochondrion

(A) L1 (B) I
10 pm 2 pm

* a and a mating type, cell cycle
* 6300 genes (1997)
 Genome-wide single mutants analysis (20007)
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Fission yeast
Schizosaccharomyces Pombe

* 1000 million years separation from budding yeast;

* 13.8 Mb genome size, 4824 genes (open reading frames, OPF);

* 3 chromosomes, no genome-wide duplications; h+ and h- mating types;
* Cell cycle: 10% G1, 10% S, 70% G2 and 10% M phases.

*Genome-wide single mutants analysis (20107~)

more similar to metazoans than S. cerevisiae

® cell cycle regulation in G2/ M phase,
® gene regulation by the RNAI pathway
® the widespread presence of introns in genes



What’s Genetic Interaction

* Genetic interactions between two loci can be mapped by
measuring how the phenotype of an organism lacking both
genes (double mutant) differs from that expected when the
phenotypes of the single mutations are combined

* Null model: F(AAB)= F(AA)* F(AB)

A Genetic interactions in yeast B Proteins C Genes
alAbA
— +4 ’
Wildtype O Suppression/ +3 @‘@
Epistatic
Q O (aAbA)>(@A)bd) +2 \%/
Mutant +1 @ @
aa O Neutral 0
O (atba)=(@n)on)
o O :
2 (o)
3 \ ]
Qs Negative Neutral Positive
Synthetic Sick W function X functuonY S
©  (aAbA)<(aB)(bd) 4
. ‘,

Beltrao et al. Cell 141: 739-745, 2010.




ldentification of Genetic Interactions

« Synthetic Gene Array (SGA) (Tong, et al.
2001)

* Diploid based Synthetic Lethality Analysis on
Microarrays (dSLAM) (Pan, X., et al. 2004)



Synthetic Gene Array (SGA)

Synthetic genetic array methodology Genetic Interaction Network

MATo ‘ x MATa g
Toog

wild-type 00 | alo @

=] chromolomo Structure,
® DNA Synthesis

© DNA Repair

® Unknown

© Others

WITa Haploid Selection
(MFA 1pr-HIS3)

S CIOCf

‘ Double Mutant Selection

—> bni1A::natR

Amy Hin Yan Tong, et al. Science, 2001.



EMAP is the Extension of SGA

 EMAP: Epistatic Miniarray Profiles (Maya Schuldiner,
et al. 2005. Cell)

* Quantitative measurement of phenotype (colony
size)
— Measure both positive and negative interactions.

— Genome-wide (DAMP for lethal genes ). .

+2

; -
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g JOU) H ", 52 % +1
DNE - * %
> g ( « ( ( | e
7 @a I 02 W
AL / | ‘
Sporulation and Wating-ype selsction ‘
s leading te tants.
tation (XA
s are then

|
0 2 homogenaus popula aploid double mutants. H 1| oo .
mutati and YA) are mated and following meiosis and 3 i <,
applied: anti-diploid selection, mating-type ( | by oo
i n agar plates using either manual or U

A b b Lo

Dorothea Fiedler, et al. Cell, 2009



EMAP S-score

e Quantitative measure: € = Wy — W, Wy, W, = w/wyia-

No interaction | Synthetic sick/Lethality | Synthetic alleviating
e =10 e <0 e >0

— T-Test with null hypothesis ¢ =0

Digital images of
arrayed colonies +4

Extract colony sizes
y —w 2
- e e -
* Normalize sizes ﬁ?il:;;m”a"y \/ n 1 S 2b _I_ n 2 w 2 sz +1
il ‘
.

Score interactions
Fiter )
incorrect

Unaveraged scores O strains

ccccc ding

A [e] S

* verage score:!

Averaged S scores -4

Sean R Collins, et al. Genome Biology 7: R63, 2006.
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PPl databases

MIPS: Munich Information center for Protein
Sequences (http://mips.gsf.de)

DIP: Database of Interacting Proteins (http://dip.doe-
mbi.ucla.edu)

BIND: Biomolecular Interaction Network Database
(http://www.bind.ca)

GRID: General Repository for Interaction Datasets
(http://biodata.mshri.on.ca/grid)

MINT: Molecular Interaction Database
(http://cbm.bio.uniroma2.it/mint/)



Further Reading

* For more experimental methods and
databases, please read the following review
paper
— Shoemaker BA, Panchenko AR (2007) Deciphering

Protein—Protein Interactions. Part |. Experimental

Techniques and Databases. PLoS Comput Biol 3(3):
e42. doi:10.1371/journal.pcbi.0030042.



Protein-protein interactions
(Computational Methods)

Gene fusion method (A.Enright 1999.
E.Maccote 1999)

Phylogenetic profile method (M.Pellegrini
1999, D.Eisenberg, 1999).

Gene cluster method (R.Overbeek, 1999).
Highly co-expressed gene pairs.



Part Il: Predicting Protein-protein
Interactions

 Some computational methods
* Predicting protein-protein interaction from
domains

— Association method
— MLE method



Rosetta Stone Method

The Rosetta Stone method for detecting functional linkage

Genaral concept

Hoselta Stone In organism 1 I [

Protain A in organism 2 (1 |
Protein B In organism 2 1N —

C. alegans
Ade5, 7.8 I T
Yeast Pur2 [ |

Yeast Purd (I |

E. coli TrpC [ [ ]
Yeast TpG  [I [ |

Yeast TrpF ——

From: Nature Vol. 405, June.15, 2000, 823-826



Phylogenetic Profiles Method

The method of phylogenetic profiles

E
P1 P2 P4 PS5 PT
5. caravisias (SC)
- 5 F1 o
O o
P3 o
E. coli (gC) |
H. pylor {HF)
Profile clusters
[Pa 1 0 0]
Phylogenetic profile = 1 1 0
EC SC BB HP Pr 1 1 0
P1 1 O 1
e P e 1=T 1 0 1F{FP5 1 1 1]
(=K ] o 1 1 |
(=¥ ] 1 o 0 = T
]

PS R PE O 1 1
(=151 0 1 1
(=g 1 1 0

Conclusion P2 and PT7 are functionally linked,

P3 and P& are functionally linked

From: Nature Vol. 405, June, 15, 2000, 823-826



Using Gene Clusters
to Infer Functional Coupling

Genome Ga

Fun run

run’ ‘ """""""""

close (gaps <= 300bp) close

Genome Gb

From: R.Overbeek, PNAS 96, 2896-2901, 1999.



Structure of Proteins




Predicting PPIs from Domains

 Domains are treated as elementary unit of
function.

 Domains are responsible for the generation of
interactions.

 Understanding protein-protein interaction at the
domain level.

—C - D o2 Wee |- @l ey (e | Do)




Domain Databases

Pfam, domain classification by HMM.
Prodom.

PRINTS, fingerprint information of protein
sequences.

SMART, mobile domain.
BLOCKs, multiple alignment blocks.
Interpro.



pl‘eh Protein families database of alignments and HMMs

Home Keyword Search| Protein Search | Browse Pfam DNA Search Taxonomy SwissPfam

SwissPfam entry for PIG1_BOVIN

Description from Swissprot for PIG1 BOVIN :

1-phosphatidylinasitol-4,5-bisphosphate phosphodiesterase gamma 1(ec 3.1.4.11) (plc-gamma-1) (phospholipase c-gamma-1) (plc-id{plc-148)

=Pl C= [1291 residues]
) e | @l e |

PH 33-142
PI-PLC-X 321-465
o50-639
668-741
SH3 794-849
PH 864-931
952-1070

1090-1177
Key
zignal peplide; plamé; Context: smart: transmembrane: lowy omplexity: coiled coil; pfamB:

O }i}.}.} | = O = 0O > =

Source  Domain  Start End  Overlapping Domains: Change the domain order Lsing the ~ and v buttons, View the changes by dicking the 'Change order’
Pfam PH 3 14p  buttOn

Pfam PLPLCX 321 465 high priority



SN Edit Wikipedia article

Piwi (or PIWTI) genes were identified as regulatory proteins responsible for stem cell and garm cell differentiation.[#] Piwi is an abbreviation of P-element Induced WImpy testis in Drnsophila.:s] Piwi proteins
are highly conserved RMA-binding proteins and are present in both plants and animals.®] piwi proteins belong to the Argonaute/Piwi family and have been classified as nuclear proteins. Studies on Drosophila
have also indicated that Piwi proteins have slicer activity conferred by the presence of the Piwi domain.-7] In addition, Piwi associates with Heterochromatin protein 1, an epigenetic modifier, and piRNA-
complementary sequences. These are indications of the role Piwi plays in epigenetic regulation. Piwi proteins are also thought to control the biogenesis of piRNA as many Piwi-like proteins contain slicer activity
which would allow Piwi proteins to process precursor piRNA into mature piRMNA.

Contents [hide]

1 Protein structure and function

2 Human Piwi proteins

3 Role in germline cells

4 Role in RNA interference

5 piRNAs and transposon silencing
6 References

Piwi domain

Structure of the Pyroceccus furiosus

Argonaute protein 1]
Identifiers

Symbol Piwi

7 External links Pfam PFO2171 &
InterPro  IPRO03165&

Protein structure and function PROSITE  PS50822&

cDD cd02826 @

The structure of several Piwi and Argonaute proteins (Ago) have been solved. Piwi proteins are RNA-binding proteins with 2 or 3 domains: The N-terminal PAZ domain binds the 3'-end of the guide RNA; the

middle MID domain binds the 5'-phosphate of RMA; and the C-terminal PIWI domain acts as an RNase H endonuclease that can cleave RNA.iS][gj The small RNA partners of Ago proteins are microRMNAs
(MiRNAs). Ago proteins utilize miRNAS to silence genes post-transcriptionally or use small-interfering RNAs (siRNAs) in both transcription and post-transcription silencing mechanisms. Piwi proteins interact with
piRNAs (28-33 nucleotides) that are longer than miRMAs and siRNAs (~20 nucleotides), suggesting that their functions are distinct from those of Ago proteins.-s]

Human Piwi proteins

Presently there are four known human Piwi proteins—PIWI-like protein 1, PIWI-like protein 2, PIWI-like protein 3 and PIWI-like protein 4. Human Piwi proteins all contain two RNA binding domains, PAZ and Piwi. The four

PIWI-like proteins have a spacious binding site within the PAZ domain which allows them to bind the bulky 2'-OCH2 at the 3" end of piwi-interacting ria.[10]
One of the major human homologues, whose upregulation is implicated in the formation of tumours such as seminomas, is called hiwi {for human p@).[ll]

Homolegous proteins in mice have been called miwi (for mouse DM].:H]

Role in germline cells

PIWI proteins play a crucial role in fertility and germline development across animals and ciliates. Recently identified as a polar granule component, PIWI proteins appear to control germ cell formation so much so that in
the absence of PIWT proteins there is a significant decrease in germ cell formation. Similar observations were made with the mouse homaologs of PTWI, MILI, MIWT and MIWI2. These homaologs are known to be present in
spermatogenesis. Miwi is expressed in various stages of spermatocyte formation and spermatid elongation where Miwi2 is expressed in Sertoli cells. Mice deficient in either Mili or Miwi-2 have experienced spermatogenic
stem cell arrest and those lacking Miwi-2 underwent a degradation of spermatogonia.[nj The effects of piwi proteins in human and mouse germlines seems to stem from their involvement in translation control as Piwi
and the small noncoding RMNA, piwi-interacting RNA {piRNA), have been known to co-fractionate polysomes. The piwi-piRNA pathway also induces heterochromatin formation at centrcmeres,-H- thus affecting
transcription. The piwi-piRNA pathway also appears to protect the genome. First observed in Drosophila, mutant piwi-piRNA pathways led to a direct increase in dsDNA breaks in ovarian germ cells. The role of the piwi-
piRNA pathway in transposon silencing may be responsible for the reduction in dsDNA breaks in germ cells.

MN-terminal

Role in RNA interference

Available protein structures:

show]

The piwi domain of an argonaute
protein with bound siRNA,
components of the RNA-induced
silencing complex that mediates
gene silencing by RNA
interference.

Cterminal

{7} Piwidike proteins

The piwi demain[-s: is a protein domain found in piwi proteins and a large number of related nucleic acid-binding proteins, especially those that bind and cleave RNA. The function of the

domain is double stranded-RMNA-guided hydrolysis of single stranded-RNA that has been determined in the argonaute family of related proteins.:l] Argonautes, the most well-studied Key: [ PAZ domain

family of nucleic-acid binding proteins, are RMase H-like enzymes that carry out the catalytic functions of the RNA-induced silencing complex (RISC). In the well-known cellular process of
RNA interference, the argonaute protein in the RISC complex can bind both small interfering RNA {siRNA) generated from exogenous double-stranded RNA and microRNA (miRMNA)

[ Piwi domain

All human Piwi proteins and argonaute proteins have the same
RMA binding domaine BAT and Diw L2]



Association-A simple method

V( D. ) - #{Illterm‘:ted protein pairs contain D,,;j}
ij) =

#{All protein pairs contain D;; }

More observed PPls for one domain pair will give higher
probability of interaction for that domain pair.



Simple Example

By assoiation method:

D
P,
" D3y = D35 = D3g = Dayg = D1 = 1.0
" '
2
" Others are 0.0.

Dis. {P34, P35, P15}/{Pss, Ps, Pis, P1:}=0.75



More complicated example

Generalized Boosted Linear Models (GBLM): | X 2R HEAREY

Train Model Predict
A\ target site
e i
50 - target taxon N uree® target e
Human Microbiome Project = i o3 2 tarset taxon
: : g : e y .
16S Microbial Abundance Data s g Network of Microbial
; 23 phenotypic a N hﬂ é Abundance Relationships
PO metadata ‘, SPim v ; GBLM
b P @ Tt T,
6(,’. .
@ ) Simes Method
8 GBLM: Generalized Boosted Linear Model FDR Correction
(=]
[t}

Post-merge Filtering

’ Ensemble of Correlation and Similarity Measures
site 2

Doy, \ . taxon 2 o Pearson Correlation
Uy, s relative abundance : :
o‘,,% @’ site 1 o Spearman Correlation

Lo 12 o Kullback-Leibler divergence '
39/,,0,1. > o Bray-Curtis Distance
V/duals

Huttenhower, et al., PLoS Computational Biology, 2013



More complicated example

Generalized Boosted Linear Models (GBLM): | X 2R HEAREY

Train Model Predict
e target site
e i
<0 - target taxon N uree® target e
Human Microbiome Project Z e NN = g target o
: : g » 8¢ < <
16S Microbial Abundance Data g g Network of Microbial
;8 & 5 Abundance Relationships
23 phenotypic 3 GBLM ~ ’ o GBLM p

X T +Z/ur st.8

GBLM: Generalized Boosted Linear Model

Simes Method
FDR Correction
Post-merge Filtering

680 taxa

’ Ensemble of Correlation and Similarity Measures
site 2

Wi S ) taxon 2 o Pearson Correlation
Uy, v _\relative abundance : :
o‘,,% @’ site 1 o Spearman Correlation

Lo 12 o Kullback-Leibler divergence '
39/,,0,1. > o Bray-Curtis Distance
V/duals

Ensemble scoring

Huttenhower, et al., PLoS Computational Biology, 2013



More complicated example

Generalized Boosted Linear Models (GBLM): | N 2R AR

Train Model Predict

A target site
ce £ we
SOV target taxon e S\
B \ so'® target site
~

‘ target taxon
&
2\
Gewm J/
%:;/

Xitt,is = Xir,ps T+ E B i t5.50.55Xst.55

source taxa

LS
\‘ "
) )
s v
%—_/

i R N B i X B

logit(x ;i) = X4 + Z Dt 15,5155 X st 55
87

Huttenhower, et al., PLoS Computational Biology, 2013



More complicated example

Generalized Linear Models (GLM): | X 2Rl

X G ART [AZ O AR AE -
o yIRMFEBOR A (RS = A, BRI A, 20, IR o A
betaZ)Aii......),  HIAAFEA Ry AR M [ A I3 A

o« EELRMRD AT B SRR LA S HOR R, B Z e A

WA BHORIFEA R BH LIRS

33333333333333
z



More complicated example

Generalized Linear Models (GLM): | X 2Rl

yi

1] S

y; = Iny;

10 _
' \V (23, V- y =w'z +b
(z2,15) (21, ¥} ) (23,93)/ Y .
’)H—. 4?—.. : 1

saanll
0 1 2 T
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Limitation of Association Method

* For multiple-domain proteins, this method
computes the value for a certain domain pair
ignoring the value of other domain-domain
pairs. So it’s a local one.

* This method cannot deal with possible error
of the data.



Probabilistic Model

Domain-domain interactions are independent,
which means that the event that two domains
interact or not does not depend on other

domains.

Two proteins interact if and only if at least one
pair of domains from the two proteins interact.



Yeast Data

* Interactions (Uetz's and Ito’s interaction
data).

 Domain: Pfam (Pfam-A, Pfam-B).
* Proteins: SGD, N=6359.



Protein Interaction Data Sources

Proteins | Pfam Super - | PPI

domains |domains
Uetz 1337 1330 313 1445
Ito 3277 2776 909 4475
Uetz+Ito [3729 3124 1007 5719
Overlap |855 964 215 201




Measure the Accuracy

Specificity and sensitivity.

Verification by MIPS physical interactions (as TRUE
interactions).

Relationship between protein-protein interactions
and expression data.

number of matches with observation

SP

number of prediction
number of match with observation

SN

number of observation



Sensitivity, %

Comparison of association method and MLE
100 T T T I I I

------- Association method
—— MLE with fixed fp=1.0E-5 and fn=0.85

90 N .

80 .

70 i |

- |
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Specificity, %



Sensitivity, %
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Verification by Known PPIs

* MIPS physical interaction. (Totally 2570 PPIs,
1414 PPIls not overlapping with our training set).

 Compare with random matching.
— Fold number

— Larger fold number imply more reliable
prediction

# {Our prediction matched to MIPS}
# { Expectation of random pairs matched to MIPS}

# Fold =

Think about FDR again...



Matching with MIPS PPls

Prob #Predict | #Train | #MIPS #Fold

All 20221620 5719 |2570|1414

>0.00 |136463 |5719 [1265|109

>=0.20 |26908 5238 |1093 |53

>=0.40 |19360 5018 |1035 |48

>=0.60 |14/25 4775 |971 |47

>=0.80 |12/34 4647 (932 |43

>=0.9/5/10824 4461 |886 |40




Interaction Data Correlated With Gene
Expression Data

* Interacted proteins seems to have high expression
correlation
— A.Grigorieve Nucleic Acid Res. 29, 2001;
— H. Ge et al. Nature Genetics 29, 2001;
— R. Jansen et al. Genome Res.12, 2002.

e Expression data (M.Eisen, 1998); 2465 Yeast ORFs
with 79 data points/ORF.

 Pearson correlation coefficient.



Frequency

Distribution of the pairwise correlation coefficients of gene expression
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Statistics of Pairwise
Correlation of Gene Expression

pairs # pairs | mean | std | Tescore | pevalue | R= > 0.5

All ORFs | 3036880 | 0.0428 | 0.2473 | 0.0000 | 5.000e-01 | 3.84%
>0.20 6392 | 0.0514 | 0.2550 | 2.7984 | 2.575e-03 | 4.79%
>0.40 4433 | 0.0510 | 0.2538 | 2.2232 | 1.311e-02 | 4.96%
>0.6( 3318 | 0.0598 | 0.2579 | 3.9644 | 3.715e-05 | 5.42%
>0.50 2756 | 0.0626 | 0.2622 | 4.2196 | 1.238e-05 | 5.88%
>0.975 2266 | 0.0628 | 0.2637 | 3.8482 | 6.002e-05 | 5.87%

Uetz+Ito | 1307 | 0.0586 | 0.2587 | 23213 | 1.015e-02 | 5.20%
MIPS 1106 | 0.1109 | 0.2767 | 91619 | 2.706e-20 | 8.23%

T — ﬂil L

1 + 1 ['.'I]—1].“--%+I:ri'-_'.-—].'tlfﬁ':E
' i1 +mq —2




A

% 8-3%: Network Module

Definition

Module detection

Bayesian approach

Markov clustering algorithm



Network Modular




Modularity

* Suppose we are given a candidate division of
the vertices into some number of groups. The
modularity of this division is defined to be the
fraction of the edges that fall within the given
groups minus the expected such fraction if
edges were distributed at random.

http://en.wikipedia.org/wiki/Modularity (networks)



Modularity

* A;: adjacency matrix
* k:degree
* m: total number of edges

0= Z}n > (Ayj = k.kjw(%cj)

2m
ij




Modularity

* For two class problem, let s=1 of node |
belongs to groupl and s.=-1 if it belongs to
group 2,

1
0(ci ) = 5(sis; + 1)

1
Q:%ZSTBS

LY

kik
B = (By;). Bij = Aij — 5~
S

2m
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Spectrum Method

* The largest eigenvectors will gives the best
grouping, positive entries corresponding to one
class, and negative ones corresponding to
another class.

* This can be achieved by power method
AFe

hm = =
k=400 el Ake

where e=(1,1,...,1)"




Example
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A Bayesian Approach to Network
Modularity

Slides for this part are mainly from

Hofman’s talk
www.jakehofman.com/talks/apam_20071019.pdf



Overview: Modular Networks

* Given a network
— Assign nodes to modules?

— Determine number of ()
modules(scale/complexity)?




Overview: Modular Networks

* With a generative model of modular networks, rules
of probability tell us how to calculate model
parameters (e.g. number of modules & assignments)

< O,

/
O




Generative Models

Know model
(parameters,
assignment
variables,
complexity)

Infer model
(parameters,

latent variables.

complexity)

Generate
synthetic data

Observe real
data



Markov Clustering Algorithm

van Dongen. A cluster algorithm for
graphs. Information Systems, 2000



K-length Path

* Basic idea: dense regions in sparse graphs
corresponding with regions in which the
number of k-length path is relatively large.

 Random walks can also be used to detect
clusters in graphs, the idea is that the more
closed is a subgraph, the largest the time a
random walker need to escape from it.



K-path Clustering

4 4 0

0

3 3 2

2

Matrix manipulation: (N+l)?



Markov Clustering

e Expansion: Through matrix manipulation
(power), one obtains a matrix for a n-steps
connection.

e Inflation: Enhance intercluster passages by

raising the elements to a certain power and
then normalize



Markov Clustering Algorithm

* [teratively running two operators

— Inflation:

r

(T,,.M)ij — Y -
Zq; Mij

Column normalization
— Expansion:

Expand(M) = M*



MCL Running

0.017
0.056
0.302
0.056

0.175
0.175

0.175
0.044

0.077
0.150
0.150
0.062
0.406
0.062
0.049
0.012
0.019
0.012

'y M?2, M defined in Figure 8

0.012
0.046
0.184
0.046
0.012
0.287
0.184
0.184
0.046

0.009
0.143
0.009

0.143
0.288

0.288
0.120

0.009
0.143
0.009

0.143
0.288

0.288
0.120




0.080
0.285
0.223
0.018
0.312
0.007
0.040
0.012
0.001
0.021
0.001

0.023
0.228
0.290
0.059
0.314
0.001
0.013
0.042
0.015
0.002
0.015
0.001

MCL Running

0.068
0.176
0.173
0.040
0.439
0.004
0.037
0.029
0.009
0.017
0.009
0.001

0.426  0.359
0.006 0.033
—— 0.010
—— 0.001
0.005 0.054
0.157 0.085
0.083 0.197
—— 0.002

Lo(Ia M2 - ToM?)

0.005
0.017
0.187
0.022

0.001
0.198
0.266

0.266
0.039




MCL Running

—— 0.034
—— 0.088
- 0.084
0.032 0.001
- 0.786
—— 0.001
0.024 ——
0.472 0.001
- 0.004
0.472 0.001
0.001 ——

0.185

0.024
0.472
0.472
0.001

0.024
0.472
0.472
0.001

(I'y o Squaring) iterated four times on M




1.000

MCL Running

—— —— —— 1.000 1.000 —— —— 1.000 —— —— \

1.000 - 1.000 —— - —_— - S —_— —
——  0.500 —— —— —— 0.500 0.500 ——  0.500 0.500

0.500 0.500 ——  0.500 0.500




A Heuristic for MCL

We take a random walk on
the graph described by the
similarity matrix

After each step we weaken
the links between distant
nodes and strengthen the
links between nearby
nodes

Graphic from van Dongen, 2000



Clustering examples
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STRING

@ ST R I N G Search Download Help My Data

Protein by name > SEAR CH
Protein by sequence » ) ) )

Single Protein by Name / Identifier
Multiple proteins >
Muitiple sequences > Protein Name: (examples: #1 #2 #3)
Proteins with Values/Ranks New >
Organisms > Organism:
Protein families ("COGs") » auto-detect v
Examples >
Random entry >




STITCH
STITCH Search  Download  Help  MyData

ltem by name > S EA RC H

Multiple names

Single Iltem by Name / Identifier

Chemical structure(s)

Protein sequencels)

Item Mame: (examples: #1 #2 #3)
Examples
Random entry Organismm:
auto-detect T
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Rosetta stone
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Protein Folding, Design, and Docking




CASP

(Critical Assessment of Techniques for Protein
Structure Prediction)

An animation of the gradient descent method
predicting a structure for CASP13 target T1008
s




CASP

(Critical Assessment of Techniques for Protein
Structure Prediction)

COMMONS @) rreinaanctum aruntonfrestetons

oftware
o L L e

g Rosetta LTASSER

bdeling s
o

_ :
he hub for Rosetta modeling s

Global and local
Structure reassembly structure matches

Structure assembly

90 and Lowme g

o potential

Foldit Symmetric Designs

PDB library

Inherent rague

REMO H-bond
optimization

Structural analogy

EC classification
GO terms
Binding site

Function prediction

Final model

Template Cluster centroid
Figure 1 | A schematic representation of the I-TASSER protocol for protein structure and function
predictions. The protein chains are colored from blue at the N-terminus to red at the C-terminus = %%




CASP

(Critical Assessment of Techniques for Protein
Structure Prediction)

DeepFold

Learned Structural Motifs
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Protein Structure Distance Feature =~ Convolutional Features Convolutional Features Fingerprint
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Distance Cutoff,

10

5

T0959-D1

CASP

(Critical Assessment of Techniques for Protein
Structure Prediction)

Distance Cutoff, A

Percent of Residues (CA)

T0966-D1

Tpo. TRy
Percent of Residues (CA) ) el




CAPRI

(Critical Assessment of PRediction of

Interactions)
NMR titrations NMR crosssaturation
mutagenesis 7 ] ’
ETRAA

U )

Cross-linking \
DY =
mbz% ex:;agej /

Bioinformatic predictions
EFRGSFSHL

HADDOCK
High Ambiguity Driven DOCKing

Other sources
u e.g. SAXS, c[xo§~, FRET, EPR, ...

NMR anlsotropy data

EFKGAFQHV
EFKVSWNHM -

LFRLTWHHV

IYANKWAHV

EFEPSYPHI RDCs, para-restraints, diffusion anisotropy




CAPRI

Presentation of old Rectangular
algorithm coordinates

Proteins of a known structure from
database

Proba-
bilistic
Energy

Orientation

Presentation of new
algorithm

Spherical
coordinates



Rosetta
Commons

The hub for Rosetta modeling software

Top: Researchers gathering samples from Great Boiling Spring in Nevada. Left: a snapshot of alighed metagenomic
sequences. Each row is a different sequence (the different colors are the different amino acid groups). Each position (or
column) is compared to all other positions to detect patterns of co-evolution. Bottom: the strength of the top co-evolving
residues is shown as blue dots, these are also shown as colored lines on the structure above. The goal is to make a structure
that makes as many of these contacts as possible. Right: a cartoon of the protein structure predicted. The protein domain
shown is from Pfam DUF3794, this domain is part of a Spore coat assembly protein SafA. (Image of Great Boiling Spring by
Brian Hedlund, UNLV. Protein structure and composite image by Sergey Ovchinnikov, UW)
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PF07624, 0.783 PF08855,0.711 PF10985,0.655  PF07864, 0.639

PF06698, 0.827

PF04380, 0.699

DUF1192, PSD2, DUF 1825, BMFP, membrane DUF2805, DUF1651,
unknown function  unknown function unknown function fusogenic activity ~ unknown function ~ unknown function
o
v
PF07631, 0.635 PF07627, 0.628 PF11297,0.623 PF05939, 0.600 PF12322,0.579
PSDA4, PSCyt3, DUF3098, Phage_min_tail, T4 _baseplate, T4
unknown function unknown function unknown function Phage miqor tail bacteriophagel
protein base plate protein
N\ ¥
D) 3
o9 '
A
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PF09834, 0.56 PF07587,0.558 PF16316, 0.549 PF07583, 0.534 PF07626, 0.533
DUF2061, Predicted PSDI, DUF4956, PSCyt2, unknown PSD.}, )
unknown function

membrane protein unknown function unknown function function

L
PF06067, 0.504
DUF932,

unknown function

PF07586, 0.507

HXXSHH, unknown
function

PF09923, 0.525

DUF2155,
unknown function

PF11360,0.516
DUF3110,
unknown function

v
B
P]-"l41108~ 0.429

DUF4281,
unknown function

PF11351,0.421
DUF3154,
unknown function

PF11233,0.422

DUF3035,
unknown function

PF15461,0.414
BCD, Beta-carotene
15,15'-dioxygenase

PF02326, 0.468

YMF19,Plant ATP
synthase FO

PL ;)
PF07637, 0.365
PSDS5, unknown function

PF11753,0.32
DUF3310, unknwon function

Genome Biology, 2019
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Predicted structure of PF15461 (d)

318 Amino Acid
Beta-carotene 15,15'-dioxygenase
369 sequence—14,353 sequence

Predicted Function:

Cellular Component: Respiratory Chain
Biological Process:
Single-organism Metabolic Process
Molecular Function:Oxidoreductase Activity

ATP Synthetase

s
o

PF15461 ATR
'Beta-carotene 15,15| Beta- 4

-dioxygenas Carotene%

o

. Bacteria

Eukarya [l Archaea

Wilcoxon test
2 500 | P-value 1.25e-25 |
g 400 f
£
g w0
k
_E 200
® 100
8 o
§ 0
]

deep layer(>15m)  shallow layer(<15m)

Genome Biology, 2019












